Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442390

RESUMO

Air-breathing vertebrates exhibit cardiovascular responses to diving including heart rate reduction (diving bradycardia). Field studies on aquatic mammals and birds have shown that the intensity of bradycardia can vary depending on diving behaviour, such as the depth of dives and dive duration. However, in aquatic reptiles, the variation in heart rate during deep dives under natural conditions has not been fully investigated. In this study, we released five loggerhead sea turtles (Caretta caretta) outfitted with recorders into the sea and recorded their electrocardiogram, depth, water temperature and longitudinal acceleration. After 3 days, the recorders automatically detached from the turtles. The heart rate signals were detected from the electrodes placed on the surface of the plastron. The mean (±s.d.) heart rate of 12.8±4.1 beats min-1 during dives was significantly lower than that of 20.9±4.1 beats min-1 during surface periods. Heart rate during dives varied with dive depth, although it remained lower than that at the surface. When the turtle dived deeper than 140 m, despite the relatively high flipper stroke rate (approximately 19 strokes min-1), the heart rate dropped rapidly to approximately 2 beats min-1 temporarily. The minimum instantaneous heart rate during dives was lower at deeper dive depths. Our results indicate that loggerhead sea turtles show variations in the intensity of diving bradycardia depending on their diving behaviour, similar to that shown by marine mammals and birds.


Assuntos
Caniformia , Tartarugas , Animais , Bradicardia , Frequência Cardíaca , Aceleração , Cetáceos
2.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35441228

RESUMO

Diving bradycardia is a reduction in the heart rate mediated by the parasympathetic system during diving. Although diving bradycardia is pronounced in aquatic mammals and birds, the existence of this response in aquatic reptiles, including sea turtles, remains under debate. Using the parasympathetic blocker atropine, we evaluated the involvement of the parasympathetic nervous system in heart rate reduction of loggerhead sea turtles (Caretta caretta) during voluntary diving in tanks. The heart rate of the control group dropped by 40-60% from the pre-dive value at the onset of diving; however, administration of atropine significantly inhibited heart rate reduction (P<0.001). Our results indicate that, similar to mammals and birds, the heart rate reduction in sea turtles while diving is primarily mediated by the parasympathetic nervous system. In conclusion, we suggest that diving bradycardia exists not only in aquatic mammals and birds but also in aquatic reptiles.


Assuntos
Tartarugas , Animais , Atropina/farmacologia , Bradicardia , Frequência Cardíaca/fisiologia , Mamíferos , Tartarugas/fisiologia
3.
Front Physiol ; 13: 811947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250617

RESUMO

Heart rate measurement is an essential method for evaluating the physiological status of air-breathing diving animals. However, owing to technical difficulties, many marine animals require an invasive approach to record an electrocardiogram (ECG) in water, limiting the application of this approach in a wide range of marine animals. Recently, a non-invasive system was reported to measure the ECG of hard-shelled sea turtles by pasting the electrodes on the dorsal side of the shell, although the ECG obtained from the moving turtle contains noise produced by muscle contraction. Here, we report that clear ECGs can be obtained by placing the electrodes on the ventral side rather than the dorsal side in loggerhead sea turtles. Using our method, clearer ECG signals were obtained with less electrical noise, even when turtles are swimming. According to the anatomical features, the electrode position on the ventral side is closer to the heart than the dorsal side, minimizing the effects of noise generated by the skeletal muscle. This new biologging technique will elucidate the functioning of the circulatory system of sea turtles during swimming and their adaptabilities to marine environments. This article is part of the theme issue "Methods and Applications in Physio-logging."

4.
Biol Open ; 11(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35225332

RESUMO

Heart rates of air-breathing diving animals can change on a short time scale due to the diving response during submergence. Heart rate is used frequently as a proxy for indirectly estimating metabolic rates on a fine time scale. However, most studies to date have been conducted on endothermic diving animals, and the relationships between metabolic rates and heart rates in ectothermic diving animals have not been well studied. Sea turtles are unique model organisms of diving ectotherms because they spend most of their life in the ocean and perform deep and/or long dives. In this study, we examined the relationship between heart rates and metabolic rates in captive loggerhead turtles, Caretta caretta, to estimate oxygen consumption rates during each dive based on heart rates. The oxygen consumption rates (V̇O2: mlO2 min-1 kg-1) and average heart rates (fH: beats min-1) were measured simultaneously in indoor tanks at water temperatures of 15-25°C. Our results showed that oxygen consumption rate was affected by heart rate and water temperature in loggerhead turtles. Based on the collected data, we formulated the model equation as V̇O2=0.0124fH+0.0047Tw - 0.0791. The equation can be used for estimating fine-scaled field metabolic rates in free-ranging loggerhead turtles. The results of this study will contribute to future comparative studies of the physiological states of ectothermic diving animals.


Assuntos
Mergulho , Tartarugas , Animais , Mergulho/fisiologia , Frequência Cardíaca/fisiologia , Consumo de Oxigênio/fisiologia , Temperatura , Tartarugas/fisiologia
5.
Mar Pollut Bull ; 175: 113389, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35149314

RESUMO

On 10 August 2021, a face mask (14 cm × 9 cm) was found in the feces of a juvenile green turtle, by-caught alive in a set net off the northeast coast of Japan. Although sea turtles have been monitored in this region over the last 15 years (n = 76), face masks had never been found before the Covid-19 pandemic and this is the first detection. Fourier-transform infrared spectroscopy identified the mask as polypropylene. Estrogenic active benzotriazole-type UV stabilizers such as UV329 were detected in commercially available polypropylene face masks. Exposure of marine organisms ingesting plastics to endocrine-disrupting chemicals and physical injury are of concern. This study indicates that changes in human life in the pandemic are beginning to affect marine life. Precautionary actions including establishment of appropriate waste management of personal protective equipment and use of safe additives are urgently needed.


Assuntos
COVID-19 , Tartarugas , Animais , Ecossistema , Humanos , Pandemias , Plásticos , SARS-CoV-2
6.
Philos Trans R Soc Lond B Biol Sci ; 376(1830): 20200222, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34121465

RESUMO

To measure the heart rate of unrestrained sea turtles, it has been believed that a probe must be inserted inside the body owing to the presence of the shell. However, inserting the probe is invasive and difficult to apply to animals in the field. Here, we have developed a non-invasive heart rate measurement method for some species of sea turtles. In our approach, an electrocardiogram (ECG) was performed using an animal-borne ECG recorder and two electrodes-which were electrically insulated from seawater-pasted on the carapace. Based on the measured ECG, the heartbeat signals were identified with an algorithm using a band-pass filter. We implemented this algorithm in a user-friendly program package, ECGtoHR. In experiments conducted in a water tank and in a lagoon, we successfully measured the heart rate of loggerhead, olive ridley and black turtles, but not green and hawksbill turtles. The average heart rate of turtles when resting underwater was 6.2 ± 1.9 beats min-1 and that when moving at the surface was 14.0 ± 2.4 beats min-1. Our approach is particularly suitable for endangered species such as sea turtles, and has the potential to be extended to a variety of other free-ranging species. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.


Assuntos
Organismos Aquáticos/fisiologia , Frequência Cardíaca/fisiologia , Fisiologia/instrumentação , Tartarugas/fisiologia , Exoesqueleto , Animais , Água do Mar
7.
J Exp Biol ; 224(Pt 4)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33436369

RESUMO

Animals with high resting metabolic rates and low drag coefficients typically have fast optimal swim speeds in order to minimise energy costs per unit travel distance. The cruising swim speeds of sea turtles (0.5-0.6 m s-1) are slower than those of seabirds and marine mammals (1-2 m s-1). This study measured the resting metabolic rates and drag coefficients of sea turtles to answer two questions: (1) do turtles swim at the optimal swim speed?; and (2) what factors control the optimal swim speed of turtles? The resting metabolic rates of 13 loggerhead and 12 green turtles were measured; then, the cruising swim speeds of 15 loggerhead and 9 green turtles were measured and their drag coefficients were estimated under natural conditions. The measured cruising swim speeds (0.27-0.50 m s-1) agreed with predicted optimal swim speeds (0.19-0.32 m s-1). The resting metabolic rates of turtles were approximately one-twentieth those of penguins, and the products of the drag coefficient and frontal area of turtles were 8.6 times higher than those of penguins. Therefore, our results suggest that both low resting metabolic rate and high drag coefficient of turtles determine their slow cruising speed.


Assuntos
Spheniscidae , Tartarugas , Animais , Metabolismo Basal , Metabolismo Energético , Natação
8.
J Exp Biol ; 221(Pt 13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748215

RESUMO

The metabolic rate and activity of sea turtles generally decreases with decreasing seasonal ambient temperature. Juvenile loggerhead turtles in the Mediterranean Sea made prolonged inactive dives (>400 min), indicating a state of dormancy during the cold winter period. However, seasonal differences in dive duration were not detected in juvenile loggerheads in the western North Pacific, even though the ambient water temperature changed by more than 10°C. Thus, metabolic states might differ among populations, explaining differences in the diving behaviour of juveniles during winter. Here, we tested the hypothesis that the active overwintering behaviour of juvenile loggerheads in the western North Pacific is driven by a high resting metabolic rate (RMR) with low thermal dependence. The RMR of juveniles in the western North Pacific (N=13) was 1.4-5.7 times higher (Q10=1.8) than that of juveniles in the Mediterranean Sea (Q10=5.4). To validate the high RMR values in the western North Pacific, the difference between core body temperature and ambient water temperature (ΔTb) was estimated from measured RMR and was compared with measured ΔTb The measured and estimated ΔTb matched each other. In addition, most of the dives conducted by the turtles in the western North Pacific were within the calculated aerobic dive limit (cADL) expected from the measured metabolic rate. Our results indicate that high RMR with low thermal dependence induces active diving during the overwintering periods of juvenile loggerheads in the western North Pacific, supporting the suggestion that metabolic states differ among populations.


Assuntos
Metabolismo Basal/fisiologia , Mergulho/fisiologia , Temperatura , Tartarugas/fisiologia , Animais , Japão , Oceano Pacífico , Estações do Ano
9.
Chem Pharm Bull (Tokyo) ; 64(6): 625-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27250797

RESUMO

Surface water samples were collected at 15 sampling sites in the southeastern Japan Sea along the Japanese Archipelago for analysis of polycyclic aromatic hydrocarbons (PAHs). Water samples were fractionated by filtration through a glass fiber membrane (pore size 0.5 µm) and analyzed by high-performance liquid chromatography with fluorescence detection. Thirteen PAHs having 3 to 6 rings were found in the dissolved phase (DP) and 12 were found in the particulate phase (PP). The total (DP+PP) PAH concentration ranged from 6.83 to 13.81 ng/L with the mean±standard deviation (S.D.) concentration of 9.36±1.92 ng/L. The mean±S.D. PAH concentration in the DP and PP was 5.99±1.80 and 3.38±0.65 ng/L, respectively. Three-ring PAHs predominated in the DP, while the proportion of 4-ring PAHs was higher in the PP. The mean total PAH concentration in the southeastern Japan Sea was higher than the concentration in the northwestern Japan Sea (8.5 ng/L). The Tsushima Current, which originates from the East China Sea with higher PAH concentration, is considered to be responsible for this higher concentration.


Assuntos
Oceanos e Mares , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Fluorescência , Japão , Propriedades de Superfície
10.
Sci Rep ; 6: 28015, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305858

RESUMO

Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris.


Assuntos
Fezes/química , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Tartarugas/fisiologia , Resíduos , Poluentes da Água , Animais , Ingestão de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...